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Simulations of a vortex tube in unbounded, inviscid, incompressible
fluid flow using three-dimensional vortex filament methods are
presented. The numerical parameters that determine accuracy are
investigated. Methads to deal with the truncated ends, which arise in
the simulation of a part of a vortex tube, are developed. The non-
monotonic response of the vortex filament evalution using the vortex
method to variation of core size is observed. The effect of a small torsion
of a wave on vortex stretching is discussed. The long-time propagation
of a periodic wave of constant helical shape alang a vortex tube is
iliustrated.  © 1993 Academic Press. Inc.

1. INTRODUCTION

In the present paper, we study the propagation of waves
along a slender “tubelike” vortex. Such wave propagation
is of interest in a number of aeronautical, geophysical,
and quantum mechanical phenomena [ 22, 25, 29]. In par-
ticular, a solitary wave propagating along a vortex filament
has been observed experimentally [15, 217 and is a major
component of certain quantum mechanical methods [29].
It can be demonstrated in the self-induction approximation
(see below); however, it has been shown that the self-induc-
tion approximation is not a good approximation to the
Euler equations [6], and solitary wave propagation con-
tradicts our intuitive feeling about what a non-integrable
system such as the Euler system in three dimensions would
do.

In this paper, we shall, in particular, examine, as carefully
as we can afford, the question of whether a solitary wave can
propagate on a vortex filament governed by the Euler equa-
tions. This investigation requires a careful examination
of the accuracy of the methods and a careful distinction
between physical and spurious vortex stretching. The
investigation is not definitive because of the limitations of
present computing facilities, but it does confirm, to the
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extent that it is reliable, that a solitary wave can indeed
propagate as claimed in earlier results. Various numerical
questions of broader interest will be examined along the
way.

The effects of numerical parameters, of the choices of core
functions, and of numerical methods for solving the time
evolution ordinary differential equation on the accuracy
and the stability of the vortex filament methods are
investigated in order to distinguish physical vortex stretch-
ing from the stretching caused by numerical factors.

A controllable single smooth initial wave on a vortex tube
is important for the study of wave propagation along a vor-
tex tube. A solitary wave solution of the localized induction
approximation (LIA) meets such a requirement. We like to
know whether a solitary wave, with velocity induced by the
Biot-Savart law, can propagate on a vortex tube for a long
time without change of its shape. If there is a stretching in
a vortex tube evolution, what causes the stretching?

For convergence of the numerical scheme and for
checking of the scheme’s physical validity, we use several
filaments to simulate a vortex tube. Some techniques to
treat the truncated ends of a part of a vortex tube will also
be given.

The paper is organized as follows: In Section 2, we review
the physical background and the derivation of vortex fiia-
ment methods. The details of the computational scheme are
given. In Section 3, we study the calculation on a part of a
vortex tube. The treatment at the truncated ends is given. In
Section 4, we presents the numerical results with initial
solitary wave data. We study the effects of the numerical
methods for solving the time evolution ordinary differential
equation, the core functions, core size, the time tolerance
control constant, the number of filaments used to simulate
a vortex tube, and the distance between filaments on the
accuracy of computational results and on vortex stretching
(both numerical and physical). We also study the effect of
torsion of an initial solitary wave on vortex stretching.
We attempt to determine how vortex stretching starts and
whether a solitary wave can propagate for a long time on a
vortex tube with velocity induced by the Biot—Savart law.
We will show that the core size and torsion of an initial
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solitary wave are the two most sensitive factors in vortex
stretching. The long-time propagation of a periodic wave of
constant helical shape on a vortex tube will be illustrated.
The results suggest that the velocity field induced by a
vortex tube governed by the Biot—Savart law can support a
solitary wave propagation on the vortex tube. Finally, we
discuss the invariants of the Euler equations such as
total vorticity, linear impulse, and kinetic energy in the
Appendix.

2. YVORTEX FILAMENT METHODS

We consider unbounded, incompressible, inviscid fluid
flows. The motion of such flows is described by the Euler
equations

Du du
E=E+(H-V)H=MVP, (1)

V-u=0, (2)

where u(x, 1) = (x, », w) i1s the velocity field, x = (x, y, z) is
the position, 7 is time, V = (&/dx, 8/dy, §/0z) is the gradient
operator, and P is pressure.

Define the vorticity o,

a=Vxu (3)

Taking the curl of Eq. (1), we find the vorticity transport
equation

z—?+(u-V)m=(m-V)u. (4)

Vortex lines move as material lines, where a vortex line is
defined as a line in the fluid whose tangent is everywhere
parallel to the vorticity vector. The circulation of a vortex
tube is

r= u-dl='|. ® - dA, (5)

< N

where dA =nd4 is an element of the open surface S,
bounded by the closed curve C,.
The solution of equation (4) in terms of @ is

u=Jx" * o, (6)
where
0 —z y
A (x}= ——L z 0 —x
T 4w
-y x 0
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A singular filament C is a curve on which the vorticity is
concentrated. We denote its circulation as I~ The velocity
induced by such a filament C is

u(x, 1)= rj K(x—x') x dI(x")

[

r _[ (x—x’)xdl(x')’ 7
C

T [x —x'|?

where K(x)= —(1/4m)(x/1x|?).
The singular part of the Biot-Savart law (Eq. (7)) can be
approximated by

CobLlm=, (8)

where b is the unit binormal vector, x is curvature, L is the
length of a thin vortex tube, and p is the radius of cross
section of the thin vortex tube. This is the self-induction
approximation or LIA. Hasimoto [14] reduced the self-
induction approximation (Eq.(8)) to the nonlincar
Schrédinger equation and found a solitary wave solution

U
s—2=tanhy
B
U
X= 2~Bsechr]c059 , (9)

2%sech 7 sin @

where g =1/(1+T?), @ =Ty +(f —*)1, n=p& T=1/p,

“E=s5—ct, ¢c=21, T is the constant torsion, f is a constant

parameter, and the variable s is arclength [ 2, 6, 19, 277,

Note that Eq. (7) diverges with rate 1/|x —x'|? if x is a
point on curve C [2]. Following Beale and Majda [5]
(who have followed an idea of Hald [13] for two-dimen-
sional vortex methods), we smooth out the singularity by
replacing the kernel ¥ by X, =X +y,, Y (x)=
6~y (x/a), where ¢ is a parameter to be chosen, We assume
that ¢ satisfies the conditions

(i) W is smooth and rapidly decreasing; ie,
1D*Y(x)] < Cyy(1+ Ix]%) ™

for every multi-index o and every integer j;

(i) f@(x)dx=1

(iii) [x{x)dx =0, 1 <|a} <m—1;mis an integer.

. The functions ¢, are called smooth delta functions because

Yo(x)—=o(x)  as

¢ —0,
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where 8(x) is the Dirac function. The parameter ¢ is known
as core size or cutoff size.
We choose K, as

1
K. (x)= —Wfﬂxl/ff)x,

where function [ satisfies

(1) f(r)/r? is a smooth function of r?
Y firi=lasr—

3) f@ /) dr=0,2<2k<m=2
(4) |Df(r)<Cyr '/, rz=1,foreach j=1 and a fixed
[zm+ 1.

The function fis called a core function or a cutoff function.
The relation between fand i is

W =f"(r)d4nr’ (10)

(see Beale and Majda [5]).
Replace K with K in Eq. (7). We find

u,(x, t)=1".|‘ K (x —x")xdl(x"}

ey

xu#_ (11)

[x —x

Let us consider first the evolution of an isolated thin tube
of vorticity, or vortex filament, with circulation I. We
divide this filament into segments. For the jth segment, the
two ends are the points x; and x;,,. Let él;=x;,, —
Equation (11) can be written as

(%, t)——— i (x —x")xdl{x)

im0 Y0l

xf('x;x’l).

We require [1;| <A for all j, where 4 is a predetermined
small number. Thus

e ()

N xjélf( )

|x —x'|?

(12)

{13}
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where

=X — 35X, %)

ry=|r;.

Inserting Eg. (13) into Eq.(12) and replacing <o with a
large integer N if the filament is infinitely long, we have

Q)

Note that for an infinitely long vortex filament, we actually
compute a finite part of the filament.
Knowing u,, we solve the ordinary differential equations

rxél

45 i (14)

ua(x =

a@_ u,(x, )

dr (13)

and we can determine the position of x; at the next time
t+ 4t. There are various numerical methods for solving
Eq. (15)%; we have used the first-order Euler method, the
second-order Heun method, and the fourth-order Runge-
Kutta method.

A filament may stretch as the flow evolves; thus é1, and
the amount of vorticity carried by this vortex element grow.
If [61;] > k, we split this segment in two at the middle of 41,
with lengths |8];|/2, to maintain the partition fine enough
for accurate computation.

We also need to control our time tolerance At.
requirement for the choice of At at step #n is given by

The

A" max |uf | < C, (16)
i

where C is a given constant, u} =u,(
time at step n.

From the accuracy of the scheme, we require o=H,
0<g<1, or simply a/h>1 [1,3,4,127. For the scheme
given above, we take the cutoff parameter ¢ as constant
for the whole filament. The vorticity distribution can be
computed by

x;(£"), 1"), and " is the

= I"Y 0, {r,(1) 81,0, (17)

We have completed the description of the vortex filament
methods for an isolated thin filament. We must use several
filaments to simulate a vortex tube. The cross section of a
real vortex filament or tube should be allowed to deform as
the flow evolves, and the deformation may be seen by using
several filaments to simulate a vortex tube {17, 31-331.
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For several filaments, e.g., M filaments, we can modify
Eq. (11) as follows:

M
w,x 0= L [ K, (x(1)=x(0) di(2).
m=1 Cm

Note that the circulation and core size may not be chosen to
be the same value for all filaments. Equation (14) ¢an be
modified as

1

M
u, (X, )=—— 3 I

m=1
N (m2} (m) (rm)
% Z % f(f.."_), (18)
J==Nn (r.' ) g
where o=¢,, i[ x is not on any given flament and
c= (a2 +07)2)'"* or 6=(0,0)" il x is on the Ith
filament.

g,, may also be varied with time or with arc length to con-
serve volume. However, with varying core size, we are not
able to produce any meaningful results except for the fast
stretching at a few perturbed regions which terminates all of
our computations within a hundred computational steps.
At this stage, it is not clear why varying core size cannot
produce a satisfactory result with the method described
above. For this reason, we only consider constant core size
through this paper.

3. CALCULATIONS ON PART OF
A YORTEX TUBE

It is often convenient to calculate part of a (possibly
infinitely long) vortex tube. To do this, we must truncate the
tails of a vortex tube. Consider first a straight vortex tube.
Assume that the tube consists of a bundle of straight parallel
filaments with equal circulation. To simplify the discussion,
we assume that the straight filaments are parallel to the
x-axis. Denote a plane parallel to the y-z plane and passing
through the point {x, 0, 0) on the x-axis by P,. Thus P, is
the y-z plane, We define the velocity pole C,(x}) on the plane
P, as the point where the y-z component of velocity is
zero. There may be several poles for a velocity field. For
simplicity, we consider only the pattern of the velocity
distribution with one pole on a given plane P,. Let C, bea
curve consisting of all C(x).

The filaments away from the pole curve C, will rotate
around the C,. The rotation speed at different point (x, y, z)
changes according to the values of the y and z coordinates.
For an infinitely long straight vortex tube, the velocity dis-
tribution on the plane P, should be the same for different x.
Thus, all points on the same straight filament should rotate
with the same speed around the velocity pele curve C,.
Without proper treatment at the truncated ends, a com-
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putational result of part of a vortex tube will not preserve
the above property due to the loss of the appropriate con-
tribution from the truncated parts during the computation.
Near the truncated ends, the computed velocity magnitude
will be quite different from the velocity magnitude induced
by the whole vortex tube. Consequently, the points on
the same straight filament will rotate with different speeds.
A physically unreasonable twisting of filaments will start at
the truncated ends and quickly spread to the middle.

The way we choose to eliminate this physically
unreasonable twisting of filaments is to recover the correct
velocity intensity near the truncated ends. To do this, we
assume that either the data is periodic, or there is no distur-
bance for the place far away from the center of computed
part. In the first case, we copy the computed part at each
end and connect it to the previous part. In the second case,
for each filament, at each end, we copy the end segment
2N, + 1 times and connect them to each other at the end.
We call the treatment for the second case the straight line
extension. For the treatments of both cases, the three-
dimensional vortex filament method scheme (Eq. (18)) can
be modified as

1 M
u,(x, tj=—— Y ™

n =,

< [rmxslm rrim
x z ( (m)).’: f
j=—Np rj a
B x g1 (7t
ERCEaA

J

{m) ) £ alm)
+r. x ol r i ’
G

where
=x—- %(xj-n +xj)
F=x— 3%, +x)
N=x—3(%.,, +%;)
rj=irjl
Fy= T,
_jzl_jl'

For the periodic data,

Xppr1 T X=X i,
xj: yj »

2y

X Ny (xN,.,,+1_xj)
X;= Vi

%
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For the straight line extension,

28,1~ %>
ijz Ywn+1 >
INm+1
X, =%,
X;= YNp+1 s
TN+ 1

where ¥ o =%y 1, B2=2xy, 01— XN Xon, =X _n»
and ¥ y ., =2x_y —Xx y .- One should modify the
scheme of straightline extension to deal with the situation of
perturbed waves passing through the truncated ends.

4. NUMERICAL RESULTS

4.1. Goal and Experimental Design

We present our numerical resuits in this section. Qur goal
1s to answer the following questions:

A. What are the effects of the choices of the numerical
methods for solving the time evolution ordinary differential
equation, the core functions, and the parameters on the
accuracy of our vortex filament scheme?

B. What are the main factors causing numerical and
physical vortex stretching?

Solitary wave propagation along a vortex tube is the physi-
cal-model problem we study here to provide answers for the
above questions. Besides, solitary wave propagation along a
vortex tube is an interesting research subject in itself. In
particular, we would like also to know

C. Can a solitary wave propagate along a vortex tube
for a long time?

The numerical and physical factors we are going to
examine are the following:

I. the numerical method we choose to solve the time
evolution ordinary differential equation;

2. the core function we construct to approximate the
singular Biot-Savart kernel;

3. the core size o defined in Section 2;
4. the time tolerance control constant C;

5. the number of filaments used to simulate a vortex
tube;

6. the distance between filaments;
7. thecirculation I” defined in Eq. (5); and

8. the torsion t of the initial solitary wave data
generated by Eq. (9).
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In the list, the numerical method solving the time evolution
ordinary differential equation, the core function, the time
tolerance control constant C, and the number of filaments
used in the simulation of a vortex tube are clearly numerical
factors, The accuracy of our results and the efficiency of our
computation depend on these factors. The circulation /" and
the torsion 7 of the initial solitary wave data are physical
factors chosen in accordance with the physical phenomenon
we attempt to simulate. The core size and the distance
between filaments could have both numerical and physical
significance, which we will explain later in this section.

To answer question A, we must examine the sensitivity of
our numerical algorithm to the factors 1-8 listed above. In
a computational result, a vortex tube stretching can be
caused by either the computational inaccuracy or physical
nature, or both, We will try to distinguish the different
causes of the vortex stretching appearing in our results
whenever it is possibie. The answers to questions A to B will
help us to answer question C.

In our vortex filament method, we split a segment two if
the length of this segment is larger than a predetermined
positive number. When a filament starts stretching, the total
arclength of the filament will grow very quickly. Thus, the
number of segments needet of vortex stretching, The total
arclength is proportional to the total number of segments.

Both numerical inaccuracy and the physical nature of the
vorticity ficld can cause vortex stretching. The numerical
errors often introduce high-frequency perturbation waves
with small torsion. Such waves easily cause violent stretch-
ing, as we wiil ¢xplain later. This type of stretching is
numerical stretching. Chorin [11] has given a statistical
analysis according to which there is an upper bound on the
possible folding of a vortex line in inviscid flow {measured
by its fractal dimension); he also showed that if a vortex line
is discretized and, in particular if its smallest scales are not
well resolved, that physical bound can be crossed and a dis-
crete vortex line will fold more than the continuum Euler
equations can allow. Thus it is a virtue of vortex methods
that they allow vortex stretching and folding, but this virtue
can become a flaw if the stretching is allowed to cross
the physical bound. The difference between physical and
numerical stretching is difficult to determine; presumably,
as long as the physical invariants are well approximated, the
stretching is physical. We can also look at the geometric
pattern of a perturbation wave and the location of the
appearance of the wave to decide whether the perturbation
wave is caused by numerical error or by physical instability
and thus distinguish physical stretching from numerical
stretching,

Computer memory limits the maximum number of
scgments per filament. If the number of segments for any
filament exceeds the maximum value, our computation is
stopped at that step. Thus, the smaller the number of steps
for which our computation can be carried out, the more
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stretching we obtain for the simulated vortex tube. If a
computation can be carried out till the allowed maximum
step, then the total number of segments at that step reflects
the stretching of the simulated vortex tube; the larger the
number of total segments implies more stretching in the
computation.

We define an elapsed time of a computation as an
accumulated sum of the time tolerances for each computa-
tional step from the beginning to the last step. The elapsed
time is an indicator of the efficiency of our computation and
a diagnostic of the accuracy of the computational results,
because the slower growth of the elapsed time usually means
that the time tolerance of each step is too small and thus
may be not efficient. The rapid growth of the elapsed time
means that the time tolerance of each step is large and may
therefore cause inaccuracy.

The kinetic energy, total vorticity, and linear impulse are
conserved quantities on whole vorticity field for the Euler
equations. Thus, on the whole vorticity field, a variation
from the initial value of each of these quantities indicates
error. However, in the computation of a portion of a vortex
tube, the case in which we are interested for all computa-
tions shown in this section, the kinetic energy of the portion
is approximately conserved only il perturbation waves are
far from the truncated ends, and linear impulse is not
conserved at all as long as there are perturbations in the
computed portion of a vortex tube. The total vorticity is
conserved in all cases. Therefore, a vanation from the initial
value of the total vorticity indicates error. If the computed
kinetic energy is conserved, our computational results may
be accurate, but a variation of the computed kinetic energy
of the portion of a vortex tube does not necessarily mean
that the result is bad (inaccurate). We should not use linear
impulse as a diagnostic of our numerical schemes in this
paper. One should refer to the Appendix for detailed
analysis. Therefore, we use the following quantities to
measure the accuracy and the vortex stretching of our
computational results:

the number of steps carried out in a computation;

the number of segments at the last computational step;
the total arclength at the [ast computational step;

the elapsed time;

the total vorticity of the computer part; and

= S i

the total kinetic energy of the computed part.

In each numerical experiment, we generate initial
vortex filament curves from Eg.(9) with predetermined
parameters. Each curve approaches at infinity a line parailel
to the x-axis. Therefore, we should see the initial wave in
each filament propagating along the x-axis. There are three
parameters that may change the shape of the initial curve:
(1) the torsion 1, (2) the parameter §, and (3) the initial time
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parameter t,, which merely determines the position of the
initial wave. The |f| determines the amplitude of curvature
k, and increasing | 7] will increase the speed of the wave and
decrease the amplitude of the wave [27]. In our computa-
tion, we record the measurements described above and the
propagation behavior of the initial wave for various com-
binations of the investigated factors. We will use tables or
figures to display the results in terms of those measure-
ments. Finally, we will analyze the results obtained and try
to find answers for our questions.

4.2. Numerical Factors

We start the discussion with number of filaments used to
simulate a vortex tube. To understand a wave motion in an
inviscid incompressible fluid flow, we would like to deter-
mine the propagation behavior of the initial wave in the
velocity field induced by a thin vortex tube governed by the
Biot~Savart law. A single filament can be viewed as a thin
vortex tube. However, the lack of change of core structure
in the cross section of a filament makes the simulation
of a thin vortex tube by a single filament physically
unreasonable, because the shape of a vortex tube core is not
preserved [17, 23, 24, 26]. Moreover, for a “fat” vortex
tube, it is unreasonable to approximate the tube by one
filament with large core size because, mathematically, it is
unreasonable to approximate the singular kernel K{(x) given
in Section 2 by the smoothed kernel K,{x) with large 6—the
core size. Note that when we increase the number of
filaments, we should decrease the circulation of each
filament to preserve the total circulation of the simulated
vortex tube. Nevertheless, the one filament simulation of a
thin vortex tube gives us some useful information on vortex
stretching and how vortex filament methods respond to
various parameters.

Theoretically, the accuracy will increase as a vortex tube

js simulated with an increasing number of filaments.

However, the simulations of our physical-model problem
require long filaments and, therefore, many segments for
each filament and long time computations to obtain enough
information to understand the questions raised at beginning
of this section. The cost of the computation and the capacity
of computer memories do not permit us to simulate a vortex
tube with many filaments. We will provide results of one-
filament simulations and of four-filament simulations for
some of the following computational experiments.

In this subsection, all initial data of our computation are
generated from Eq. (9) with 1 =3.0, 8 =2.0. The length ds of
each segment is 0.04 initially. A segment must split in two of
its length is longer than 0.05, i.e., & = 0.05. The computation
is terminated if there is a filament with more than 1000
segments.

We examine the following numerical methods for solving
the time evolution ordinary differential equation—the
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numerical ODE solvers: (1} the first-order Euler method,
(2) the second-order modified trapezoidai method (the
second-order Heun method), and (3) the fourth-order
Runge-Kutta method (RK4) The core functions we
examined are the following:

Core 1:1 —e"’;

Core 2; tanh r?;
Core3:1+(—-1+ %r;a)e_,a;

Core 4: tanh r* + 3r° sech? 1.

We make runs with each numerical ODE solver and each
core function for one filament and for four filaments. In
Table I, we list the total number of computational steps, the
total number of segments at the last computational step, the
total arclength at the last computational step, and the
elapsed time.

From Tablel we see that with the first-order Euler
method, the rate of siretching is much faster than the rate of
stretching with other two methods. We believe that the fast
stretching rate is largely due to numerical error because
most of stretching is caused by high frequency waves which

TABLE]

Comparisons of the Total Number of Computational Steps Per-
formed, the Total Number of Segments (N) at the Last Computa-
tional Step, the Total Arclength {s} at the Last Computational
Step, and the Elapsed Time (7'} for Various Core Functions and
Numerical ODE Solvers with One Filament and with Four
Filaments

One filament Four filaments

At last step At step 200
Methods Core Sieps N T iy N T 5
Euler I 104 993 1410 3495 — — —
2 84 982 1255 3484 — — —
3 78 993 0755 3507 — — —
4 84 991 0.665 3518 — — —
Heun 1 139 974 1980 3369 2258 2050 7766
2 140 986 1940 3428 2369 2.020 8284
3 200 510 1945 1780 1867 1.155 64.66
4 200 529 1815 1867 1815 1.045 6442
RK4 1 142 977 2010 3386 2332 2050 809t
2 145 982 1990 3399 2506 2020 §7.34
3 200 558 1985 2028 1848 1185 6472
4 200 510 1925 1674 1798 1075 64.38
Note. These calculations were performed with the periodic data

assumption and with parameters of core size 0 =0.2, 1, = —0.1, C=0.05,
t=130, and §=2.0. I'=5.0 for one filament simulation. For four filament
simulations, "= 1.25; the initial distance between filaments was 0.05.

S81/104/1-13
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occurred where no such waves had been observed using
other higher order ODE solvers. Therefore, we think that
the results produced with the first-order Euler method is
much less accurate than the results produced with other two
ODE solvers and did not make runs for four filaments with
the Euler method. There is no great difference for the results
made with the second-order modified trapezoidal method
and the results made with the fourth-order Runge—Kutta
method. We will use the fourth-order Runge—Kutta method
for the rest of our runs in this section.

TableI shows that use of different core functions
produces different results. We cannot really see, however,
which core function gives us a more accurate solution
because the behavior of a core function 1s governed by the
core size. Each core function responds to a same value of
core size differently.

We calculated the kinetic energy of the particular part of
vortex tube by use of the scheme (27) in the Appendix,
where the o is replaced by N,,—the number of segments for
the mth filament. For the reason explained at the end of the
Appendix and at the end of Section 4.1 the computed value
of kinetic energy is, at best, approximately conserved. In
Table I1, we displayed the variations of total vorticity and
kinetic energy of the computed portion of a vortex tube. The
data shown in Table Il are calculated according to the
following formulations:

K.E. (%). the percentage of maximum variation of
kinetic energy from the initial kinetic energy is

max, |kinetic energy at step n
— initial kinetic energy|

— x 100;
initial kinetic energy

T.Vor. (%). the percentage of maximum variation of
total vorticity from the initial total vorticity is

(max,, |total vorticity at step n)

— initial total vorticit
yl x 100.

[linitial total vorticity||

From Table 11, we can see that the total vorticity is well con-
served for all cases, and the computed kinetic energy has
some variations as we expected from the analysis in the
Appendix. We also illustrated the behaviors of total vor-
ticity and kinetic energy in the computation in Fig. 1. From
both Table II and Fig. 1 we can see that the four-filament
simulations give better results in terms of the
diagnostics—total vorticity and kinetic energy. From Fig, 1,
for the computations using the second-order modified
trapezoidal method and the fourth-order Runge-Kutta
method, the order of core function and the order of the
numerical ODE solver have a visible effect on the computed
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kinetic energy. According to Beale and Majda [5], core
function 1 and core function 2 are of second order, and core

FIG. 1. The diagnostics of computation for various ODE solvers and core functions.

function 3 and core function 4 are of fourth order.

From Eq. (16),

A" max [uf| < C.
J

The time tolerance control constant C is one of the factors
determining the accuracy of our computational results.

However, if C is too small, the computational cost wiil be
quite high. In Table III we see that when we increase C, the
elapsed time, the number of segments, and the arclength at
the last computational step are increased, and the number
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TABLEI1

The Percentages of Maximum Varigtion of Kinetic Energy from
the Initial Kinetic Energy and of Maximum Variation of Total
Vorticity from the Initial Total Vorticity in the Computed Portion

One filament Four filaments

QDE
solver Core K.E.(%) T.Vor.(%) KE.(%) T. Vor.{%)}
Euler 1 4.135 0.008606 — —
2 3.178 0.007783 — —_
3 15.19 0120818 — —
4 10.81 0.058267 — —
Heun 1 6.706 0.000025 5011 0.000065
2 5.871 0.000071 4.550 0.000018
3 6816 0001153 2315 0.000059
4 8.095 0.005762 3478 0.000018
RK4 1 6.531 0.000022 4.652 0.000018
2 5923 0000102 4.820 0.000018
3 1145 Q.000671 1128 0,000043
4 6.104 0.000720 0.930 0.000018
Note.  See Table I for the choices of parameters.

of computational steps needed to reach a given value of
elapsed time is decreased. In Table 111, for C = 0.06, we see
the dramatic increase in the number of segments and the
arclength at the last computational step and the decrease of
the number of computational steps needed to reach the
elapsed time 0.1575. Such dramatic changes indicate that
the computational results with the parameters given at the
footnote of Table III are not accurate for C > 0.05,

The choice of C depends on the maximum amplitude of
the velocity induced by the filaments and therefore depends
on the circulation 7. From Eq. (18), increasing I" will
increase the amplitude of velocity, whereas, from Eq. (16},
increasing the amplitude of the velocity for a given constant
C wiil decrease the time-step tolerance Az, However, in two
runs, if the only difference is the constant circulation
number, say F'; # I';, and the equation

A" max ju| =C (19)
4

is used to determine 41" at each step instead of Eq. {16) for
both runs, then the stretching behavior of filaments for the
two runs will be identical. The reason is that if 7{"'=1r,
and 'W=T, for m=1, .., M in two runs, and if at step »

and cach space point x;,
”} (xp My I,

- ] -=15 25 35
ux, 1"y I, !

(20)

where (u,, u;, u3)=(u, v, w) =u, then

45N =481,
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if Eq. (19) is used to determine A¢f and 4¢%; thus each space
point X;on a filament will evolve the same for both runs,
and equality (20) will remain at next step.

43. Core Size

As discussed in Subsection 4.2, the core size should not be
too large because of the mathematical unreasonableness to
approximate the singuiar kernel K(x) by K _(x) with large
core size a. The core size is an impoertant numerical factor.
However, we could think of core size as the thickness of our
filaments; thus the core size could have some physical
significance for a thin vortex filament. We would like to find
a reasonable range of core sizes and the responses of our
computational results to the choices of various core sizes.

In Table I'V and Table V, we displayed the resulis of the
total number of computational steps, the number of total
segments at the last computational step, the elapsed time,
and the total arclength at the last compuational step for
runs made with various core sizes. The maximum number of

TABLE 1Ii

Comparisons of the Total Number of Computational Steps Per-
formed, the Total Number of Segments (N} at the Last Computa-
tional Step, the Total Arclength (s} at the Last Computational
Step, and the Elapsed Time {T) for Vartous Time Tolerance
Control Constants C

At the last step

C Steps N T s
0.02 250 170% 0.15750 64.04793
003 250 1778 0.24875 64.27265
0.04 250 1879 0.31375 65.23524
0.05 2350 1934 0.33125 66.26626
0.06 250 3518 0.43500 119.03595
0.07 175 3624 0.43500 122.79700
0.10 162 3647 042500 124 47843

Steps needed to reach the elapsed time 0.1575

At the last step

C Steps N T s
0.02 250 1709 0.15750 64.04793
.03 132 1710 0.15750 64.04794
0.04 125 1709 0.15750 64.04791
0.05 138 1710 (.15750 64.04775
0.06 65 1710 0.15625 64.04724
0.07 63 1710 0.15750 64.04726
0.10 55 1713 0.15750 64.04207
Note. These calculations were performed for four filaments using the

fourth-order Runge-Kutta methed and the core funciion 4 with the peri-
odic data assumption and with parameters of core size ¢ =0.2, 1,= —0.2,
I'=350, 1=3.0, and #=20. The initial distance between filaments was
0.05.
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computational steps is 250 for each run. The maximum
number of segments for each filament is 1000. Therefore, if
a run is stopped before the 250th step, it indicates that a
violent stretching occurred. The fewer the total steps for a
run, the sooner a violent stretching occurs. Il a run is
stopped at step 250, the total number of segments measures
the intensity of stretching in that run. The voriex stretching
phenomenon can be better illustrated by figures (see Fig. 2
for the one-filament simulation).

It is interesting to see from Tables 1V and V that the rate
of stretching does not respond monotonically to the core
size. Such a phenomenon is shown directly in terms of
arclength in Table IV for runs made with a single filament
and with core function 4 and in Table V for runs made with

LIA gsolitary wave

ANMIN QI

four filaments, Krasny [ 18] has reported the nonmonotoni-
cal response to core sizes for a two-dimensional blob
method with a core structure different from those used here.
We observed from Table I'V and Table V that choosing core
size at a certain range, we can obtain a very low rate of
stretching. The range is around 0.1 and 0.55 in Table IV for
core function 4 and around 0.2 and 0.6 in Table V.

In Table IV, the values of arclength are close to each
other for those runs terminated before the 250th step. From
this observation, we conclude that the number of segments
grows rapidly once stretching starts in a run. From both
Tables 1V and V, we see that the total elapsed time increases
when we increase the core size. It means that the time
tolerance At for cach step determined by Eq. (16) is larger

core gize = .08

t= 0.618
step=120
t= 0.873
atep=130
t= 0.723
atep=140
t= 0.748
wstep=150
t= 0.772
step=180
t= 0.798

U

FIG. 2. Perspective views of wave propagating on one filament for various core size.
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for larger core size; that is, the maximum amplitude of the
velocity increases when we increase the core size.

Figure 2 shows the geometric shapes of waves propa-
gating on one filament for various core sizes. The data
correspond to the results in Table IV with core function 4.
In all the runs, the initial wave can propagate without
significantly changing shape for certain computational
steps; then, the wave either splits into several waves or starts
to stretch with different geometric shapes, depending on the
core size and other parameters. For smaller core sizes, the
propagation of the initial wave is closer to the analytic
solution of LIA in terms of the phase of the wave.

The following are the summary of our observation made
from Fig. 2:

core gize = 0,1

t= 0.865
step=110
t= 0.940
step=120
t= 0.995
step=130
t= 1,055
ptep=140

wtep=200
t= 1.405
step=210
t= 1.4565
atep=220
= 1.505
atap=230
t= 1.568

ptep=250
t= 1.855
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» For core size equal to 0.55, we see a smaller wave split
from the original one with a stable shape propagating in the
positive direction on the x-axis. Later, several waves split
and move away from the original wave. When the core size
is 0.35, stretching happens soon after some perturbation
appears in front of the initial wave. A similar phenomenon
occurs for the run made with core size ¢ =0.2, but the
geometric structure of the stretching is quite different.

« All stretching happens in a narrow region in the
x-direction; that is, the stretching does not spread along the
x-direction.

« In the case of core size ¢ =0.2, a long arm comes out
from the filament and wraps around the axis on which the

0.2

core mize =

atep=100
t= 1.000
itep=110

t= 1.300

t= [.B75
step=200
t= 1.825
step=210
t= [.875
step=220
t= 2.025
step=230
t= 2.075

t= 2175

FIG. 2—Confinued
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TABLE IV

Comparisons of the Total Number of Computational Steps Per-
formed, the Total Number of Segments (V) at the Last Computa-
tional Step, the Total Arclength (s) at the Last Computational
Step, and the Elapsed Time (T) for Various Core Sizes and for
Two Types of Core Functions with One Filament

197

TABLE V

Comparisons of the Total Number of Computational Steps Per-
formed, the Total Number of Segments () at the Last Computa-
tional Step, the Total Arclength (s) at the Last Computational
Step, and the Elapsed Time (7') for Various Core Sizes with Four
Filaments

At the last step

At the last step

Core Core Core
functions size Steps N T 5 size Steps N T 5
Core 1 0.05 88 878 0.3975 3129 0.10 142 2798 0.08937 97.46644
0.08 237 963 i.785 3416 0.15 250 2113 0.31250 69.65556
0.09 238 978 1.9025 3367 0.20 250 1934 0.33125 66.26626
0.095 241 983 1.945 33,78 0.25 250 2264 0.435 81.34734
0.10 240 972 1.975 3334 0.30 236 3314 0.5975 113.05148
011 234 987 2,025 34.03 0.40 250 2519 0.7075 84.75277
015 193 979 203 34.50 0.50 250 2451 1.25 72.87434
0.20 142 977 2.0t 33.86 0.55 250 2257 1.25 67.20053
0.25 146 993 222 34.41 0.60 250 2219 1.29 66.05207
0.30 218 992 4.04 33.21
0.35 250 636 5.34 19.03 Note. These calculations were performed for four filaments using the
0.40 250 602 6.64 17.00 fourth-order Runge-Kutta method and the core function 4 with the peri-
odic data assumption and with parameters t,= —02, C=005, I'=50,
Core 4 0.05 61 953 0.14063 33.90 t=3.0, and § =2.0. The initial distance between filaments was 0.05.
0.08 51 948 0.1725 33.27
0.09 168 980 08175 3202
0.10 250 502 1.655 16.52
0.15 250 512 1.99 16.70
0.20 250 813 218 28.18 TABLE VI
0.25 213 991 2.16 34.12
0.30 157 993 209 3451 Comparisons of the Total Number of Computational Steps Per-
0.35 149 982 215 34.09 formed, the Total Number of Segments (N) at the Last Computa-
0.40 237 997 329 33.05 tional Step, the Total Arclength (s} at the Last Computational
0.45 250 685 413 2147 Step, and the Elapsed Time {7T') for Various Distances between
0.50 250 602 5.00 16.83 Filaments .
0.55 250 575 5.20 16.56
060 2350 695 1000 16.64 Core size = 0.2 Core size =0.3
Note, These calculations were performed for one filament using the .
fourth-order Runge-Kutta method with the periodic data assumption and E;?i:;: Atlast step At last step
with parameters 7, = —0.2, =005, I'=50, 1=3.0, and f=2.0. flaments Steps N T s Steps N T s
0.01 250 2295 2.015 78917 172 3840 2075 144728
In conclusion, we should not choose core size too big, say 0.02 250 2009 1.800 68281 205 3820 2.095 133.139
bigger than 1, or smaller than 0.1 if we use single precision 003 250 2054 1605 70700 233 3848 2105 133627
in computation. In the range [0.1, 1], the vortex filaments g-g‘; ggg iggl };gg gg-ggz i;?{ g;?i %;gg :f;oggf
will bchave dlffe_rently for ('hfferent choices of core size. It is 006 350 1028 1275 64977 247 3615 2430 121650
possible to obtain a long time stable (less stretching) result 007 250 1956 1265 64943 250 3092 2500 104647
of a wave propagating on filaments for certain choices of 0.08 250 2027 1.255 67.644 250 2596 2.500 84.842
core size. We have not found a proper analytic method o 009 250 236! 1255 79363 250 2305 2500 81T
determine that value, The choice of core size, now, very g-}? ;(3)3 gzg;’ i-(l)gg :ig’g;g ;gg ;ggf‘l gigg ;Z-g;:
much depends on experience and experimental observation. 0.12 179 3196 0895 109033 250 2488 2500 76722
0.13 162 3118 0.810 107.001 229 3800 2.290 121.869
. . 0.14 140 2955 0.700 103.022 195 3752 1,950 124.328
4.4. Factors Affecting the Placement of Filaments 015 128 2802 0645 124123 198 3764 1980 124123
The different choices of initial distance beiween filaments - ;
Notre. These calculations were performed for four filaments using the

(in multi-filament simulations) could produce different
velocity distribution, as iliustrated in Fig. 3 and in Fig. 4 for
four filaments, Evidently, the choice of the initial distance

fourth-order Runge—Kutta method and the core function 4 with the peri-
odic data assumption and with parameters of core size 6 =0.2, t,= —0.2,
C=005r=125r1t=30,and § =20
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FIG. 3. Velocity distribution on a plane perpendicular to a straight vortex tube,

between filaments depends on the choice of core size.
Figure 3 shows that if an initial distance between filaments
is chosen to be greater than or equal to the core size, the
induced velocity distribution will start to change its
character. Figure 4 illustrates more clearly how velocity
distribution changes when the distance between filaments is
larger than core size .

Table VI shows that even with the initial distance
between filaments less than the core size, the different
choices of the distance wili produce different results of
stretching. The stretching rate will increase if the initial
distance is larger than half of the core size. We therefore
conjecture that the initial distance should not be larger than
half of the core size.

To simulate a thin vortex tube, using several filaments
with smaller initial distance between filaments will produce
a result similar to the result obtained using one filament

with other parameters unchanged. For each set of given
parameters, there is a critical value for the initial distance
between filaments at which the least stretching happens in
the computational result. In Table VI, for core size 6 =0.2
the value is obtained arcund (.06 and for core size 0 =0.3
the value is around 0.11. For core size ¢ = 0.4, which we did
not provide full data in this paper, the value is around 0.10.
Therefore, to avoid higher stretching in a numerical simula-
tion of a vortex tube by a bundle of filaments, we may
choose the distance between filaments close to the critical
value. Note that vortex stretching could be physical. There-
fore, it may not be reasonabie to put our effort into eliminat-
ing all stretching. Besides there is no better method other
than numerical experiment to find the cricial value. Because
of the difficulty to determine the physical and numerical
stretching, we are not able to give a precise method to
choose the initial distance between filaments at this stage.



199

WAVE PROPAGATION

0.2

Distance

0.200E+01
—
MAXIMUN VECTOR

0,457E+01
—_—
MAXIMUM YECTOR

Distance

= 0.3
A A,

Distance

1111111 Y
ST ey
———

0.248E+0!

0.205E+01
—
MAYIMUM YECTOR

—

MAXIMUM VECTOR

Velocity fields induced by four filaments on cross section,

FIG. 4.

4.5. The Torsion T of the Initial Curve and Vortex Stretching  will be closer to a plane curve. When t =0, the given curve

lies in a plane [30]. In our computation, we observed that
when a vortex filament stretches, there is a part of the line

The torsion 7 of initial curve is clearly a physical factor. In
Eq. (9), increasing || will increase the speed and decrease

the amplitude of the isolated helical wave contained in the

whose curve is almost a plane curve; ie, the curve has

a small torsion. We consider this observation in this

subsection and attempt to give an explanation.

inttial curve. Geometrically, with smaller 1, a given curve
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FIG. 5.
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Perspective views of wave propagating on four filaments for initial curves with various torsion t.
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FIG. 5—Continued

Generating an initial curve, whose shape is determined by
a constant torsion 1 and the curvature, from the Hasimoto
solitary wave solution of the LIA, we wish to see the effects
of varying t on the vortex stretching. The results are dis-
played in Table VII, which shows that vortex line stretching
does not respond to the initial curve torsion  monotoni-
cally. However, if 7 is small enough, for example, in
Table VII, if 1<1.0, the vortex stretching does occur
directly on the initial wave, whereas il 7> 1.0, waves with
small torsion occur at where the stretching takes place. The
occurrence of small torsion waves can be seen from the
fact that the stretching is always highly concentrated on a
narrow region along the x-axis on which the filament is
lying. Curves confined in the narrow region on one direction
are small torsion waves (Fig. 8).

Figure 5 gives the perspective views of wave propagating
on four filaments with torsion t =0, 1, 2, and 4, respectively,
for the initial data. The choices of other parameters are
given at Table VIL It can be seen clearly from Fig. 5 that the
filaments are bent and wrap around the x-axis at where the
original wave is located for 1 < 1. For 1= 2, we obtained a
long time propagation of the initial wave. For 1 =4, the
stretching occurred on a wave split from the main wave.

To understand the reiation between vortex stretching and

TABLE VII

Comparisons of the Total Number of Computational Steps Per-
formed, the Total Number of Segments (N) at the Last Computa-
tional Step, the Total Arclength (s) at the Last Computational
Step, and the Elapsed Time (7) for Various Wave Torsion  of
Initial Data and for Both One Filament and Four Filaments Cases

One filament Four filaments

At the last step At the last step

T Step N T 5 Step N T s

6.0 300 670 6.0000 16.15896 300 1950 0.75000  64.77505
50 300 647 60000 1622601 300 1955 0.73125  64.38577
4.5 300 647 33400 1703079 300 2605 060250  83.75597
40 234 988 24300  33.53885 300 2749 049125 9279603
30 259 989 22200 3450552 300 2335 039375  80.63711
25 300 512 2.6800 1630441 300 2047 0.38625  70.28714
20 300 456 30000 1623470 300 1860 038125  64.67449
1O 90 968 0.5750 3441537 118 3849 0.14750 136.68418
05 77 990 03925  349600! 72 3677 0.00000 130.69027
00 67 992 02425 3526452 70 3490 0.05313 12524485
Note. These calculations were performed using the fourth-order

Runge—Kutta method and the core function 4 with the periodic data
assumpticn and with parameters of core size 6 =02 1, = —0.2, C =005,
I'="50, and f=2.0. The initial distance between filaments was 0.05.
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tributed in a more complicated pattern and less evenly on
the slice through the peak of the wave. There is one pole for
t=4 and 6, two poles for 1 =2, and a possible three poles
for = 1. It is very interesting to see that the velocity poles
can stay away from the filaments in the cases t=2and t = 1.
That is, for some cases, at certain slice of plane parallel to
»y-z plane, the velocity induced at that place is largely con-

a T =10.0

0.307E+C2
—
MAXIMUM VECTDR

0.382E+02
—
MAXIMUM YECTOE

203

tributed by the parts away from a local region where the
filaments exactly pass through. Such an induced velocity
can only occur if the vortex line has small torsion curve.
More complex the pattern of an induced velocity field is,
more sensitive the vortex system is to the perturbation made
in the vorticity field, thus more likely the violent stretching
occur on the vortex lines.

0.213E+02
—
MAXIMUM VECTOR

G. 300K +0R
—
KAXTMUM YECTOR

F1G. 7. Velocity distribution on the slice y =0.
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In Fig. 7, we plot the slices of the x-z plane, i.e., the plane
in three-dimensional space with y =0, of the velocity dis-
tributions for various values of 7. Let us look at a vertical
line passing through the peak of the wave in each picture.
On the line, in the cases t=2.0 and t=4.0, there are no
significant alterations of the velocity vectors in the range the

 ANMIN QI

main wave rcaches, whereas in the case 7= 1.0, the velocity
vectors near the wave peak is opposite to the velocity vec-
tors in the rest part. Thus for the case v = 1.0, the vortex
filaments are more likely bent and start to stretch, where the
vortex lines possess maximum velocity intensity. For the
case T.= 0, the velocity distribution on the x-z plane is sym-

Step 210
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T
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FIG. 8. Velocity distributions on the slice y =0 and the evolution of vortex lines.
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metric with respect to the vertical line passing through the
peak of the wave. The velocity vectors are vertical on the
line of symmetry. Thus the wave does not move along
the x-axis; it instead stretches or is bent in the direction
which the wave peak points.

We now consider the stretching that happens after the
initial wave propagates for a while along a vortex tube. In
Fig. 8 we plot the evolution of vortex lines projected on the
x-z plane and their induced velocity distributions on the
slice y = 0. The initial curve is generated from the Hasimoto
solitary wave solution of the LIA with = 4.0. The perspec-
tive view of the evolution of the vortex filaments is shown in
Fig. 5. The nine pictures start from step 2000 and end at step
280, which illustrates the process of vortex stretching, One
can sec from step 200 to step 240 that, at the right front of
the wave, the vortex lines become more vertical which
means their torsion is small. The x-components of velogity
vectors at the left side of the wave front are much larger than
the ones at the right side. Such a distributed velocity field
surely increases the vortex lines stretching because more
wave lines are trapped at the right of wave front as the vor-
tex filaments evolve and thus more complicated interactions
between those lines will produce a further chaotic pattern of
velocity field on a small scale, in particular, on the y- and
z-components. The evidence is shown clearly in Fig. 8 from
step 200 to step 280. The development of a violent stretching
can be considered as the development of a singularity on a
vorticity field.

4.6. Summary and Discussion

We have investigated eight factors listed in Subsection
4.1. Most questions we posed at the beginning of this section
have been answered at this point. We summarize these
answers here.

A_ The higher-order numerical methods used to solve
the time evolution ordinary differential equation generally
give us more accurate results. The vortex tube simulation
becomes more accurate as the number of filaments
increases. The time tolerance control constant C is impor-
tant to obtain an accurate result. Generally speaking, the
smaller C we use, the higher accuracy we obtain, but the
computation becomes more expensive. The core function is
core size dependent. Core size too large or too small will
produce inaccurate results. With core size in a reasonable
range, presumably between 0.1 and 1 with single precision
computation, the vortex filaments behave differently for
various choices of core sizes. However, we are not able to
determine the optimal core size analytically at present. The
choice of the initial distance between filaments depends on
the core size. The value of the initial distance should be less
than half of the core size. But the optimal choice of the
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initial distance can only be determined by experiment and
the nature of the simulated flow.

B. Core size and wave torsion are the two most sensitive
factors in studying vortex stretching. A wave with small
torsion on a vortex line more likely causes the vortex
line stretching. The violent stretching part of a vortex line is
confined in a narrow range at the propagating direction
wave. We therefore think that a singularity is developed
where a violent stretching happens.

Question C 1s equivalent to the question of whether a
singularity in a vorticity field must occur in the evolution of
a vortex tube. Recent results obtained with a newly
developed numerical scheme shows that solitons do indeed
exist on the vortex filaments with the velocity field induced
by the Biot-Savart law [28]. Here, we illustrate a wave
propagating in a periodic computing box and preserving its
shape for a long time in Fig. 9. The computation is done
with the method provided in this paper and with the peri-
odic data assumption. The wave repeats in the periodic box
once from step O to step 330. In the figure, we illustrated the
wave before crossing the boundary of the periodic box at
step 120 and the wave after crossing the boundary at step
180. At step 470, the wave is about to cross the boundary
again. We computed a total 500 steps. The shape of the wave
persists perfectly until the last step—the 500th step. Some
authors also attempt to obtain better approximation of the
Euler equations by improving the LIA [16]. The study of
such improved approximation may provide an analytic
answer to this question.

APPENDIX

Several invariants of the Euler equations are often used to
check the validity of a numerical scheme for the Euler equa-
tions. They are the total vorticity £2, linear impuise I, and
kinetic energy E of a vortex system, defined by

Q:jde (21)
1= %Jxxma’V (22)
E=%Ju-udV, (23)

where we have assumed that the density is one.

For an unbounded flow with zero velocity and zero
vorticity at infinity, for example, the closed ring, the total
vorticity £ is zero, and the kinetic energy and the linear
impulse I are independent of time.
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FIG. 9. A solitary wave propagation.

On the whole R’ space, we can write the total kinetic

energy as
~g e

This expression is the Lamb integral [ 20].

We call the conserved quantities such as kinetic energy,
linear impulse, and total vorticity the diagnostics of a
numerical scheme because a good numerical scheme for
solving the Euler equation in an unbounded region shouid

-0

E dVix) dV(x’). (24)

r

preserve these quantities. The discretizations of these
diagnostics are based on the analysis used to obtain the
vortex filament methods in Section 2,

M w2
Qx ¥ re ¥ s

m=1

(25)

Jf=—w

M o
Ix1 Y 1 Y alxs1m,

m=1

(26)

j=—w

{m) _
where ai™ = (x!7) + x™)/2.
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The energy computation is a little more complicated. where
From Eg. (24),
=5, [ SR e v Eigil, L, e 0w
1 2 il a(x)-o(x’
N &n ,-:Z,m ,-;iw ! BV, LV,- (|X)— X{| )dV(x) av(x’) The total kinetic energy in a region consists of two parts.
o - One is the sum of the E;, the self-energy, denoted by E; the
=Y YE+ Y E, 27 other consists of the remaining terms, the exhange energy,

f=—a0 J#&7i = —oo

denoted by E,.
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For these terms E;in £, i # j, under the more restrictive
condition:
max(|él,], |o);} < r;

where r; is the distance between the midpoints of two
segments d1; and 41;, we may approximate E; as usual,

E..;F@J f d-dl, _I.I,381;-8l,
Yo8r Jadayx—x| 0 8n o ry

i

However, it is clear that the terms E; in E, canrot be
approximated so simply, and E; is also too large to be
ignored. One can resolve this difficulty by using a scaling
property of E; [7-10].

To derive the scaling property of self-energy, we consider
a piece of a cylindrical vortex tube with height / and cross-
section radius o—the core size defined prior to Eq. (10)}—
lying on the coordinate system given by Fig. 10. We denote
the total kinetic energy induced by this piece as E{s, [); ie.,
1 (o VA A

J dyj. dz

E(o,1)=o
(@ D=g:]_ Yy
o2 — 2

x'[(: dxr dy'J _dz

—a —Ja—

2

o(x)-o{x")

!
xj dx’' -
0 |x — x|

(28)

Clearly, the vorticity @ depends on the radius ¢ and can be
written as o, = (£, 0, 0) in the given coordinate system. We
will assume that the circulation o, - nAd{s) =&, A(s) is fixed,
where A(0) = na?; that is, for a real parameter ¢ > 0,

C.alex) Alea) = £,(x) Ala)
or '

£ulex) = = £, ().

€
A simple computation [27] shows that
E(eo, elY=¢F(0,1).

FIG. 10. A piece of a cylindrical vortex tube.

(29) |
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Let ¢ = 1/¢; we then find that

E(o, Y=cE(l, l/o)y=0aT(ljo}, (30)

where T(/)= E(1, /) is a single variable function.

With the assumption that the vorticity @, is constant in
space and time, e.g., @,(x) @, (x'}=C(s) - T(/) has the
asymptotical properties

T()~const-IIn!  for

T(J}~ const - [? for

=+

[—0

{see [27] for a detailed derivation).

Now we compute T(/}. Once we make a table of T(/), we
can use interpolation and Eq. (30) to compute E(g,!) for
any given ¢ and [ Since the vorticity » depends on core
structure, we should not assume @ to be a constant vector.
We must evaluate T(/) from Eq. (28). Therefore we need to
compute o, first. From Eq. {17) and (10) and the definition
of y_(x) Section 2, following part (iii), -

By [(rfo) dlix')

w_ (X, )=
“(’)41r, or?

_ I ¢ J'(r/e} dl(x’)
#47:0}22_00 Llj r?
~ L i f’(qf/g)élf’

dno a;

J=—c0 J

(31)

where r=|x—x'| and & =|(x;,, +x,)/2—x|*. From the
first equality, we can see that

1
(!)M.(EX, t) :E—i ma(x, I)

which justifies the assumption of Eq. (29). From Eq. (31),

2

T()~ e j:“ 8 Ll dp ﬂ dz

2r 1 !
dae’' | dp'| dz’
Farfwfe
PP T L TR o (e f () 8 8L ala)
pl+p?—2pp cos(6—8)+(z—z')?

which can be evaluated by standard integration schemes.
The self-energy can be computed as

E= 3%

o, T(l;/s.), (32)

o0

where /,=|dl;|. The total kinetic energy is given by the
approximate expression

E=FE.+E,,



WAVE PROPAGATION

where E; =37 3. ., E; E;=(I',;/8a)6); él,/r;} and
E_ is given by Eq. (32).

One must be cautious for the use of these numerical
schemes of the diagnostics. On a finite part of an unbounded
vorticity field, the linear impulse may not be conserved; the
total kinetic energy of this part may not be expressed as
Eq. (24). Therefore when we compute a finite part of an
unbounded vorticity field, the linear impuise of this part
should not be used as a diagnostic quantity, and the numeri-
cal scheme (27} may not provide correct answers for the
total kinetic energy of this part.

To demonstrate our point, let us consider an infinitely
long vortex tube lying on x-axis, i.e., the center line of the
tube approaches the x-axis for an x component that is large
enough. Let us pick up a portion of the tube with the
volume of the portion defined as

W,={(x,y,2):a(}<x<b(1), —0 <y, z< +},

where subscript 1 means the volume moving with the flow.

It is clear that the total vorticity in the given portion W,
does not vanish. However, the total vorticity in the given
portion W, is independent of time,

%J.W'dezgjerxudV
=JW Vx%dV

I

=—[ vx(@pyar=o0,
W,

I3

where we have used the Euler equations (1) and (2).

Generally, in the restricted region ¥, the kinetic energy
is not conserved, and Eq. (24) is not equivalent to Eq. {23),
due to the nonvanishing boundary terms. We denote
u=(u,0,w), @={(&{,7), and ¥ =(,¥,, ¥5)" Let us
compute dE/dt on W,
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where we used the fact that
u-VP=V{uP)— (V-u}P=V(uP)

since V.-u=0. The last surface integration does not vanish
unless u =0 or P =0 at both planes x=¢ and x = 5. There-
fore the kinetic energy E in the restricted region W, is not
conserved generally.

On the other hand, the kinetic energy E can be expressed
as

E=}[¥-@dv-{[V-(ux¥)aV.

The second term cannot be eliminated generally on the
restricted portion W, because

V- x¥)= | [pa—wpa) i8] daly, 2)

Thus, on the restricted portion W,, Eg.(24) is not
equivalent to Eq. (23} generally.

The linear impulse in the restricted region W, is also not
conserved generally. Let us compute d1/df,

dl D Dw
E_JW,—(xxm)dV=J‘W‘(uxm+xx—) dv,

Dt Dt
where
J uxodV
Wi
1 d(un)  d{vu) H(wu)
= —V(u-a)— - — 1%
JW,[z - o a ]d
lj [(0? +w? —u?)| 28] dA(y, z)
2 R? x=a y!
= ~ [ [w)i=t1dA(y, 2)
R?
-] Tww)32i]dA(y, )
and
Do
jwrxxEdV=.[W,xx(w-V)udV.
Both the surface integration and the integration

jW, Xxx(®-V)udV do not vanish generally. Therefore,
dl/dt #0; that is, the linear impulse in the restricted region
W, is not conserved.






